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The flow of compositional gravity currents past circular cylinders mounted above
a wall is investigated numerically. Two- and three-dimensional Navier–Stokes
simulations are employed to quantify the force load on the cylinder, along with
the friction velocity at the bottom wall near the cylinder, for Reynolds numbers in
the range of 2000–45 000. While two-dimensional simulations accurately capture the
impact stage, they are seen to overpredict the force and friction velocity fluctuations
throughout the transient stage. Comparisons between gravity current and constant-
density flows past circular cylinders show that the impact and transient stages are
unique to gravity current flows. During the quasi-steady stage, on the other hand, the
wake structures and the values of the drag, the peak-to-peak lift, the vortex shedding
frequency and the friction velocity below the cylinder are comparable.

The friction velocity below the cylinder depends chiefly on the Reynolds number
formed with the front velocity and the gap width. The maximum friction velocity at
impact is about 60 % larger than during the quasi-steady stage or in a constant-density
flow. This raises the possibility of aggressive erosion behaviour at impact, which may
occur in a spanwise localized fashion because of the larger friction velocity near the
lobes.

1. Introduction
As the offshore oil and gas industry moves towards deeper ocean environments,

submarine structures such as oil and gas pipelines become increasingly exposed to
less understood hazards, among them gravity and turbidity currents (Dengler &
Wilde 1987; Niedoroda et al. 2000; Ross et al. 2004; Bruschi et al. 2006). Such
gravity currents form when a heavier fluid propagates into a lighter one in a
predominantly horizontal direction (Benjamin 1968; Simpson 1997). When driven
by density differences because of concentration variations of liquids, solutes or gases,
these currents are referred to as compositional gravity currents. Alternatively, the
driving force may be caused by differential particle loading; in this case the currents
are called turbidity currents (Meiburg & Kneller 2010).
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Figure 1. Schematic of the flow configuration. A channel of length L and height H contains
a lock of length l and height h. When the gate at x = 0 is opened, a current of the denser fluid
forms and propagates towards a circular cylinder of diameter D, which is situated a distance
lc away from the gate and a distance G above the bottom wall.

Our incomplete understanding of the interaction between gravity currents and
submarine structures in the deep sea has motivated several recent experimental
(Ermanyuk & Gavrilov 2005a ,b) and numerical (Gonzalez-Juez, Constantinescu &
Meiburg 2007; Gonzalez-Juez, Meiburg & Constantinescu 2009a ,b) investigations.
These indicate that such flows differ fundamentally from the well-studied problem
of constant-density flows past bluff bodies (Williamson 1996; Zdravkovich 1997),
because of the presence of a moving front. All of the above-mentioned studies employ
the lock-exchange set-up (figure 1), as it allows for the systematic variation of the
dominant control parameters. The generic configuration involves a channel of length
L and height H , filled with ambient fluid of density ρ0 and solute concentration c0.
Submerged in it is a lock of length l and height h, which contains a heavier fluid of
density ρ1 and concentration c1. When the vertical gate at x = 0 is opened, the denser
fluid forms a compositional gravity current that propagates towards the right along
the non-erodible floor of the channel, where it encounters a submerged obstacle after
travelling a distance lc.

Earlier studies based on this configuration have considered both bottom-mounted
rectangular cylinders (Ermanyuk & Gavrilov 2005b; Gonzalez-Juez et al. 2009a) and
circular cylinders mounted above a wall. For the latter configuration, Ermanyuk &
Gavrilov (2005a) have discussed experimental measurements of the force acting on
the cylinder. Corresponding two-dimensional Navier–Stokes simulations by Gonzalez-
Juez et al. (2009b) investigated the relationship between this force and transient flow
structures. As will be discussed below, a number of questions are left unanswered
by these two-dimensional calculations, which provides the motivation for the three-
dimensional simulation work to be described here. Nevertheless, the two-dimensional
simulations by Gonzalez-Juez et al. (2009b) are able to reproduce the splitting of
the current into a portion that flows beneath the cylinder and creates a jet-like flow
and another portion that flows over the cylinder. Eventually, the current re-establishes
itself further downstream. Both experiments and simulations show that the interaction
of the gravity current with the cylinder can be divided into an impact, a transient and
a quasi-steady stage. During the impact stage, the drag increases towards a maximum,
while the lift undergoes a strong initial fluctuation. The analysis of Gonzalez-Juez
et al. (2009a) has shown that the maximum drag at impact can be up to three times
as high as during the quasi-steady stage. For sufficiently wide gaps and large values of
the ratio H/h of the channel and lock heights, the two-dimensional simulations show
von Kármán vortex shedding during the quasi-steady stage. The shedding frequency
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and the root mean square (r.m.s.) fluctuations of the lift are close to those for constant-
density flows past cylinders near walls. However, in contrast with constant-density
flows, the mean lift now has components owing to both buoyancy and the slight
deflection of the wake by the denser fluid flow. For wide enough gaps and H/h = 1,
the shear layer between the dense and light currents is seen to be sufficiently strong
and close enough to the cylinder to cancel the roll-up of vorticity, thereby suppressing
vortex shedding.

For gravity currents flowing past bottom-mounted square cylinders, Gonzalez-Juez
et al. (2009a) have shown that two-dimensional and three-dimensional simulations
produce nearly identical force profiles during the impact stage. However, two-
dimensional simulations can notably overpredict the force fluctuations after impact,
as a result of more coherent Kelvin–Helmholtz vortices in two dimensions. We note
that for the classical problem of constant-density flow past a circular cylinder, Mittal
& Balachandar (1995) also found that two-dimensional simulations overpredict the
mean drag and r.m.s. fluctuations of the lift in comparison with three-dimensional
simulations, as vortices are shed closer to the cylinder in two-dimensional simulations.
On the basis of the above observations, our first objective then is to identify
the conditions under which results from two-dimensional simulations of gravity
current flows past circular cylinders are adequate and when three-dimensional effects
become important (§ 3.3). For bottom-mounted square cylinders, the investigation by
Gonzalez-Juez et al. (2009a) sheds some light on the two-dimensional versus three-
dimensional issue. However, those results are not directly applicable to the case of a
circular cylinder placed some distance above the wall, because of the presence of von
Kármán vortex shedding and the effect of the gap.

The three-dimensional simulations of gravity current flows past bottom-mounted
rectangular cylinders by Gonzalez-Juez et al. (2009a) have shown that the gravity
current’s lobe and cleft structure (Simpson 1997) determines the spanwise variation
of the drag at impact. During the quasi-steady stage, a cellular flow structure that
is similar to the one seen in constant-density flows dominates (Martinuzzi & Tropea
1993). Hence, our second objective is (a) to assess the effect of the lobes and clefts
on gravity current flows past circular cylinders mounted some distance above a wall,
(b) to identify the nature of the three-dimensional flow during the quasi-steady stage
and (c) to discuss the effect of these three-dimensional flow features on the spanwise
variation of the drag (§ 3.4). In addition, we will compare wake flow structure, mean
drag and r.m.s. lift fluctuations during the quasi-steady stage for gravity current and
constant-density flows past circular cylinders (§§ 3.4 and 3.5). This comparison will
provide some guidance as to when the wealth of data for constant-density flows
past circular cylinders near walls (Bearman & Zdravkovich 1978; Zdravkovich 1985;
Fredsøe & Hansen 1987; Chiew 1991; Lei, Cheng & Kavanagh 1999; Lei et al. 2000)
is applicable to gravity current flows.

An issue of great concern for flows around pipelines on the seafloor is scour, i.e. the
removal of sediment from the vicinity of the pipeline by the flow. Scour represents
a threat to the stability of submarine structures, and hence there is great interest in
predicting its occurrence. The scour by steady and wavy flows past circular cylinders
has been studied extensively in the past (e.g. Whitehouse 1998; Sumer & Fredsøe
2002). Similarly, substantial attention has focused on sediment transport by gravity
current flows in the absence of obstacles (e.g. see the reviews by Middleton 1993;
Kneller, Bennett & McCaffrey 1999; Meiburg & Kneller 2010; see also the recent
high-resolution simulations by Necker et al. 2002, 2005; Blanchette et al. 2005).
However, we are unaware of any fundamental investigation into scour by gravity
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current flows past cylinders. Hence, our third objective is to take a first step in this
direction.

Sumer & Fredsøe (2002) laid out the key mechanisms behind scour. For a circular
cylinder situated on an erodible bed, scour starts when the difference in pressure
upstream and downstream of the cylinder exceeds a threshold that depends on the
properties of the bed. Once this threshold is surpassed, ‘piping’ sets in, and the
bed underneath the cylinder is washed away. The simulations to be discussed below
will allow us to formulate a criterion for the onset of scour when a gravity current
flows over a bottom-mounted cylinder. The onset of scour is followed by aggressive
sediment transport below the cylinder, called tunnelling erosion and by the somewhat
weaker lee-wake erosion downstream of the cylinder.

The total sediment transport rate qt of the current, in terms of volume of sediment
material per unit time and unit width, is composed of a bed load component qb and
a suspended load component qs (Graf 1984). This sediment transport rate qt has
been modelled as a function of the bed properties and the shear stress magnitude
|τw| at the bed. It scales as qt ∼ (|τw| − |τcr |)n, where n � 1, and |τcr | represents a
critical wall shear stress. This scaling relationship suggests that the study of sediment
transport in gravity current flows past cylinders should begin with the mechanisms
that generate the bed shear stresses. Thus, we quantify the wall shear stresses in
gravity current flows past cylinders (§ 4). We will first discuss the temporal evolution
of |τw| near the cylinder from a representative three-dimensional simulation (§ 4.2). It
will then be shown that two-dimensional and three-dimensional simulations predict
similar values of |τw| near the cylinder at impact and during the quasi-steady stage
(§ 4.3). On the basis of this finding, we will employ two-dimensional simulations to
study the influence of various parameters on the values of |τw| near the cylinder.
Finally, we will present qualitative arguments for the evolution of scour in gravity
current flows along erodible beds, on the basis of our findings for |τw| in non-erodible
beds (§ 6).

2. Computational approach
2.1. Governing equations

The simulations are based on the Navier–Stokes equations in the Boussinesq
approximation, and they follow the approach outlined by Härtel, Meiburg & Necker
(2000b) and Ooi, Constantinescu & Weber (2005, 2007b, 2009). In the usual way, we
introduce the buoyancy velocity

ub =
√

g′h, (2.1)

where the reduced gravity g′ is defined as

g′ = g(ρ1 − ρ0)/ρ0. (2.2)

The relationship between density and concentration is assumed to be linear:

ρ = ρ0 +
ρ1 − ρ0

c1 − c0

(c − c0). (2.3)

By introducing suitable characteristic quantities, we can define dimensionless variables
as

t∗ =
t

(h/ub)
, x∗

i =
xi

h
, u∗

i =
ui

ub

, p∗ =
p

ρ0u
2
b

, c∗ =
c − c0

c1 − c0

. (2.4)
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As a basis for large-eddy simulations (LESs) with subgrid-scale contributions to the
diffusion of momentum and concentration, we thus obtain the governing dimensionless
equations for the conservation of mass, momentum and concentration in the form

∂u∗
j

∂x∗
j

= 0, (2.5)
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Here u∗
i denotes the velocity vector, p∗ the total pressure, c∗ the concentration and eg

i

the unit vector pointing in the direction of gravity. The spatial coordinates are denoted
alternatively by (x, y, z) or by (x1, x2, x3). As governing dimensionless parameters in
(2.5)–(2.7) we identify the Reynolds and Schmidt numbers, respectively, as follows:

Re =
ubh

ν
, Sc =

ν

κ
, (2.8)

where ν represents the kinematic viscosity and κ the molecular diffusivity. A Reynolds
number based on the cylinder diameter D and the velocity U to which the cylinder
is exposed (to be defined later) is also used throughout the present work and is given
by ReD = UD/ν. In addition, there are various geometrical parameters, the most
important ones being H/h, D/h and G/h.

We remark that in the following discussion, it will generally be advantageous to
render time dimensionless by means of the front velocity V of the gravity current,
since this will frequently lead to a better collapse of data from different flow fields
(Gonzalez-Juez et al. 2009a). Nevertheless, in deriving the above equations we employ
ub for non-dimensionalizing time, since this quantity is known a priori, whereas V

can be determined only in the course of carrying out the numerical experiment. For
the same reason, the lock height h is taken as the length scale, rather than the gravity
current height. We note that the height of lock-exchange currents usually is close to
h/2 (Shin, Dalziel & Linden 2004).

In the two-dimensional simulations, all of the scales of motion are resolved by
choosing a sufficiently fine grid and by setting the subgrid viscosity ν∗

SGS and diffusivity
κ∗

SGS in (2.6) and (2.7) to zero. On the other hand, the three-dimensional simulations
employ an LES approach, so that a higher-Reynolds-number regime can be reached.
With the LES approach, only the large energy-containing scales are resolved, while
the effect of the small unresolved scales on the large scales is modelled by evaluating
ν∗

SGS and κ∗
SGS in (2.6) and (2.7) with the dynamic Smagorinsky model (Germano

et al. 1991; Lilly 1992). Additional details are provided in Ooi et al. (2009) and Pierce
(2001).

Unless otherwise stated, the bottom (y = 0) and left (x = −l) boundaries of the
computational domain, and the surface of the cylinder, are treated as no-slip walls.
The top boundary (y = H ) is considered to be a slip wall. A convective boundary
condition is employed along the right boundary (x = L−l) of the domain (Pierce 2001).
In the three-dimensional simulations, the flow in the spanwise z-direction is assumed
to be periodic, and three-dimensionality is triggered by means of small random
disturbances in the initial conditions (following the approach of Ooi et al. 2009).
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The flow field is initialized with the fluid at rest everywhere and the dimensionless
concentration c∗ being one (zero) within (outside) the lock.

2.2. Numerical methodology

Equations (2.6) and (2.7) are discretized on a non-equidistant Cartesian mesh and
are solved with a finite-volume direct numerical simulation/LES code (Pierce 2001;
Pierce & Moin 2004). The velocity components are represented in a staggered fashion
with respect to pressure and concentration, in both space and time. All differential
operators are discretized using central differences, except for the convection term in
the concentration conservation equation (2.7), which is discretized using the QUICK
scheme. Time integration is accomplished via an iterative procedure similar to the
Crank–Nicolson scheme. To ensure that the continuity equation (2.5) is satisfied, a
Poisson equation for the pressure correction is solved at each time step by means
of a multi-grid algorithm. The numerical method is second-order accurate in both
space and time. The region in the Cartesian mesh where the cylinder is located is
decoupled from the fluid via boundary conditions. Inside this region the velocity,
pressure and concentration are set to zero. This methodology, called grid blanking,
could be considered a simpler form of the immersed boundary technique.

Our code has been validated for the simulation of intrusion currents (Ooi,
Constantinescu & Weber 2007a), gravity currents over no-slip walls (Ooi et al.
2005, 2007b, 2009) and gravity current flows past bottom-mounted square cylinders
(Gonzalez-Juez et al. 2007, 2009a), as well as for the simulation of flows past open
cavities in which a passive or active scalar is present (Chang, Constantinescu &
Park 2006, 2007a ,b) and other types of flows (Pierce 2001; Pierce & Moin 2004). In
addition, the predictions of our code for the mean drag, peak-to-peak lift and vortex
shedding frequency in two-dimensional flows past square cylinders inside channels are
in good agreement with those from recent codes (Gonzalez-Juez & Meiburg 2009).

Since in the present simulation work the circular cylinder is approximated in a
Cartesian mesh, we present additional validation data comparing our results with
those from other computational investigations of two-dimensional constant-density
flows past circular cylinders. The two values of ReD =UD/ν considered are 250 and
525, where U is the free-stream velocity. The complete parameters of these two-
dimensional simulations can be found in Gonzalez-Juez (2009). Table 1 shows that
at ReD = 525 (ReD = 250) the mean drag calculated with our code is within 6 %
(2 %); the vortex shedding frequency is within 2 % (1 %); and the peak-to-peak lift
is within 5 % (1 %). The level of agreement between our results and those from other
investigations is satisfactory for the objectives of the present work. This agreement
reflects the fact that the boundary layer on the cylinder is sufficiently thick for the
surface roughness not to have a strong influence for the values of ReD considered
here.

2.3. Parameter range of the simulations

The length of the computational domain is kept at L/h = 28 for all simulations. The
width of the domain in the spanwise direction is set to h for the three-dimensional
simulations, as is commonly done in experiments (e.g. Simpson 1997; Ermanyuk &
Gavrilov 2005a ,b) and simulations (Härtel et al. 2000b; Cantero et al. 2007 and Ooi
et al. 2009 used a width of 1.5h). This width should be sufficiently large to resolve the
gravity current lobe-and-cleft structure and the flow structures in the cylinder wake.
The constant lock length of l/h= 12 ensures that during the time of the simulation,
reflections from the left wall do not influence the interaction between the gravity
current front and the cylinder, so that a constant flux of dense fluid towards the
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ReD = 250 ReD = 525

Posdziech & Our Mittal & Our
Parameter Grundmann (2007) results Balachandar (1995) results

FD,mean/(0.5ρ0DU 2) 1.33 1.31 1.44 1.36
FL,pp/(0.5ρ0DU 2) 1.60 1.62 2.42 2.30

f/(U/D) 0.202 0.205 0.210† 0.215
Lw/D 0.50 0.50

First separation point 112◦ 110◦

Second separation point 137◦ 138◦

†This value is from the experiments by Prasad & Williamson (1997) at ReD = 592.

Table 1. Comparison of the results from our simulations and those of others for
constant-density flows past circular cylinders at ReD = 250 (Posdziech & Grundmann 2007)
and ReD = 525 (Mittal & Balachandar 1995). The quantities considered are as follows: the
mean drag FD,mean/(0.5ρ0DU 2), peak-to-peak lift FL,pp/(0.5ρ0DU 2), vortex shedding frequency
f/(U/D) and wake length (Lw/D). Also shown are the location of the first and second
separation points behind the cylinder, which can be seen in the mean streamline plots of
figure 12 in Mittal & Balachandar (1995); for reference, the stagnation point is at 0◦, the top
of the cylinder at 90◦ and the base at 180◦.

cylinder is maintained. The ratio of the channel height and the lock height is set to
H/h = 2.5, which approximates well the deep ambient case of H/h → ∞ found in
practice (Gonzalez-Juez et al. 2009a). The distance between the gate and the cylinder
is set to lc/h= 3 for most simulations, since it ensures that the current is in the
constant-front-speed phase (Simpson 1997) when it encounters the cylinder. However,
whereas a value of lc/h= 3 is large enough for lc/h not to be an important parameter
of the problem in two-dimensional simulations (Gonzalez-Juez et al. 2009a), we will
see that larger values are needed in three-dimensional simulations; thus, we also
consider a value of lc/h= 9 in three-dimensional simulations. Reynolds numbers in
the range Re = 2000–45 000 are considered, which are typical of laboratory gravity
currents. The Schmidt number Sc has a small effect on the dynamics of the flow and
is kept at unity (Gonzalez-Juez et al. 2009a). The ratio of the cylinder diameter and
the lock height is D/h = 0.1. For comparison, typical gravity current heights O(1–
100 m) and cylinder length scales O(1 m) yield a range of D/h= 0.005–0.5. A range
of gap widths of G/h = 0.015–0.15 (G/D = 0.15–1.5) is explored, which corresponds
to values typically generated through scouring (e.g. Sumer & Fredsøe 2002).

A grid of 1600 × 320 × 60 (1600 × 320) is employed in the three-dimensional (two-
dimensional) simulations. The grid is refined near the cylinder to ensure a streamwise
and vertical grid spacing of 0.01D there. In addition, the grid is also refined near
the bottom wall, where the vertical grid spacing is of the order of 0.001h. With this
grid refinement near the wall, the value of the eddy viscosity ν∗

SGS at this location
is two (one) orders of magnitude less than 1/Re in the simulations at Re = 9000
(Re = 45 000). The time step size is limited such as to keep the Courant–Friedrichs–
Lewy number below a suitable value determined in test simulations. Grid resolution
tests were conducted by comparing the results from two-dimensional simulations
with grids of 800 × 160, 1600 × 320 and 2400 × 520. Because the results for a grid of
1600 × 320 were found to be in good agreement with those for 2400 × 520, the former
discretization was selected. For example, the maximum drag at impact, the amplitude
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lc/h 9 3 3 9

Re 9000 9000 9000 45 000
G/h 0.03 0.03 0.15 0.03

Table 2. Parameter values employed in the three-dimensional simulations.

of the initial fluctuation of the lift and the maximum wall shear stress right below
the cylinder at impact agreed to within less than 1 % for these two grids.

The parameter combinations of the three-dimensional simulations are shown in
table 2, and those of further simulations will be discussed later.

3. Force acting on the cylinder
3.1. Reference case

The parameters for the reference three-dimensional simulation are Re =9000, lc/h= 9,
D/h= 0.1 and G/h= 0.03; the Reynolds number based on the cylinder’s diameter
is ReD = 459, as discussed in § 3.5. Figures 2(a)–2(c) show the temporal evolution
of the flow field for the reference case by means of spanwise vorticity isosurfaces,
which highlight the interface between the fluids. The cylinder’s centre is located at
x/h=9.05 for the reference case. Notice in figure 2(a) the lobe and cleft structure
at the current front (Simpson 1972), as well as the Kelvin–Helmholtz billows further
upstream. In figure 2(b), the gravity current front has just encountered the cylinder
and is now plunging downward immediately downstream of the cylinder. Later on,
the current re-establishes itself downstream of the cylinder (cf. figure 2c).

Figures 3 and 4(a) allow us to associate the temporal evolution of the flow field
with the instantaneous force components acting on the cylinder and to define the
three stages of the interaction. Here the force exerted by the fluid on the cylinder is
calculated by integrating the total pressure around the circumference of the cylinder.
The contribution from the shear stresses around the cylinder is negligible for the
range of parameters considered (Gonzalez-Juez et al. 2007, 2009a ,b). The x and y

components of the force are referred to as drag FD and lift FL, respectively. They are
scaled as FD/(0.5ρ0DV 2) and FL/(0.5ρ0DV 2), while time is normalized as t/(h/V )
(Gonzalez-Juez et al. 2009a). The front speed V of the gravity current is calculated by
tracking the foremost point of the c∗ = 0.5 concentration isosurface. Before the current
meets the cylinder, its front speed has a value of V/ub = 0.59 for the reference case
(H/h = 2.5 and Re = 9000), and of V/ub = 0.61 for the high-Reynolds-number case
(H/h = 2.5 and Re =45 000). These values compare well with the experimental data
of V/ub = 0.57 (V/ub =0.60) obtained by Shin et al. (2004) for H/h = 2 (H/h = 3).

The drag increases approximately exponentially as the gravity current approaches
the cylinder (cf. figure 3a), and it reaches a maximum at t/(h/V ) = 9.2 when the
current meets the cylinder (cf. figure 3b), marking the end of what we define here as
the impact stage. A more detailed analysis shows that the increase of the drag with
time is not sensitive to the shape of the cylinder or to the gap distance but is very
sensitive to the ratio of the channel height and the lock height. While for H/h = 1
the drag increase is almost exactly exponential, it starts to deviate slightly from the
exponential form as H/h increases.

During the impact stage the lift undergoes a strong initial fluctuation (cf. figure 4a).
Notice the formation of a jet of dense fluid in the gap (figures 3b and 3c) and the
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Figure 2. Temporal evolution of the gravity current for (a–c) Re = 9000 and (d ) Re = 45 000.
Other parameter values are D/h = 0.1, lc/h = 9 and G/h =0.03. Instantaneous spanwise
vorticity isosurfaces (ωz/(V/h) = 1) are shown at t/(h/V ) = (a) 7.1, (b) 10, (c) 14.8 and
(d ) 14.6.

later plunge of the head of the current downstream of the cylinder in figure 3(d ).
These two processes are associated with high levels of shear stresses at the bottom
wall, as will be seen in § 4. After impact, the drag and lift undergo fluctuations during
the transient stage, which ends once these quantities reach a mean quasi-steady value
by t/(h/V ) ≈ 18; the so-called quasi-steady stage then begins. We remark that the
dimensionless times at which the stages start and end are parameter dependent.

3.2. High-Reynolds-number case

A comparison between the reference case (Re = 9000, lc/h= 9, and G/h = 0.03) and
the Re =45 000 case reveals two important differences. First, note that the spanwise
vorticity in the mixing layer between the two fluids and in the cylinder wake takes
the form of larger-scale, coherent patches in the reference case (cf. figures 2c, 3e and
3f ). On the other hand, these patches are of a much smaller scale, and are much
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near the cylinder in (b) and (e) is enlarged in (c) and (f ), respectively. Note the formation
of a jet of dense fluid in the gap in (b, c) and the later plunge of the current downstream of
the cylinder in (d ). These two processes are associated with high levels of shear stresses at the
bottom wall (cf. § 4).
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Figure 4. Temporal evolution of the spanwise-averaged drag (thick lines) and lift (thin lines)
for (a) Re = 9000 and (b) Re = 45 000. Other parameter values are D/h = 0.1, lc/h = 9
and G/h = 0.03. The lift fluctuation during the impact stage is lower for the higher-
Reynolds-number case.
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Figure 5. Spanwise vorticity ωz/(V/h) field at z/h = 0.5 and t/(h/V ) = 16.9 for Re = 45 000,
D/h = 0.1, lc/h = 9 and G/h = 0.03. The cylinder is located at x/h = 9–9.1. The region near
the cylinder is enlarged in (b).

more intermittent, in the Re = 45 000 case (cf. figures 2d and 5). This suggests, from a
qualitative standpoint, that these flow regions appear to be laminar or at most weakly
turbulent in the reference case and turbulent for Re = 45 000. The second important
difference between these two cases concerns the stronger initial lift fluctuations in the
interval t/(h/V ) = 9–11 for the lower-Re case (cf. figures 4a and 4b). A key mechanism
for generating these fluctuations is the temporal variation of the horizontal velocity
difference between locations right above the cylinder, outside the boundary layer and
the gap (Gonzalez-Juez et al. 2007, 2009b). This horizontal velocity difference, which
can be related to the lift through Bernoulli’s principle, is larger for the lower-Re case,
resulting in stronger lift fluctuations.

3.3. Range of validity of two-dimensional simulations

Earlier investigations of gravity current flows without submerged cylinders observed
the formation and convection of separated flow structures along the bottom wall by the
action of the Kelvin–Helmholtz billows at the interface between the two fluids (Härtel
et al. 2000b; Cantero et al. 2007). Our recent simulations of gravity current flows
past bottom-mounted square cylinders show that these Kelvin–Helmholtz billows
and separated structures affect the unsteady force loads after impact (Gonzalez-Juez
et al. 2009a). This effect is more pronounced in two-dimensional than in three-
dimensional simulations, since these flow structures are more intense and coherent in
two-dimensional simulations. Furthermore, while the effect of these flow structures
on the unsteady force load is limited to the transient stage in three-dimensional
simulations, it can last much longer in two-dimensional simulations at higher Reynolds
numbers O(10 000), as the three-dimensional breakup because of spanwise instabilities
is absent in two-dimensional simulations (Gonzalez-Juez et al. 2009a). Consequently,
the force fluctuations beyond the impact stage are notably overpredicted by two-
dimensional simulations at large Re values. Below we will find that for circular
cylinders with a gap, even in two-dimensional simulations the effect of these separated
structures on the unsteady force load is limited to the transient stage. This represents
a key difference between the cases of a circular cylinder with a gap and a bottom-
mounted rectangular cylinder.

We begin by focusing on the influence of the distance lc/h between the gate
and the cylinder on the temporal evolution of the flow field and the force loads in
three-dimensional simulations. This will be helpful for interpreting the subsequent
comparison of two-dimensional and three-dimensional simulation results. For the



80 E. Gonzalez-Juez, E. Meiburg, T. Tokyay and G. Constantinescu

1.0
(a)

(b)

0.5

–
1 0 1 2 3 4 5 6 7

–
1 0 1 2 3 4 5 6 7

y/
h

0

1.0

0.5y/
h

x/h

0

Figure 6. Spanwise vorticity ωz/(V/h) fields at z/h = 0.5 and at different times for Re = 9000,
D/h = 0.1, lc/h = 3 and G/h = 0.03: (a) t/(h/V ) = 3.2 and (b) t/(h/V ) = 8.3. The cylinder is
located at x/h = 3–3.1, which is too close to the gate to allow for the three-dimensional
breakup of the Kelvin–Helmholtz billows. This results in large force fluctuations during the
transient stage.
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Figure 7. Temporal evolution of the spanwise-averaged drag for the reference case Re = 9000,
D/h = 0.1, lc/h =9 and G/h = 0.03 (thick solid line) and for the case with the same parameters
but a shorter distance lc/h =3 between the gate and the cylinder (thin solid line). The curve
for the reference case has been shifted along the abscissa so that the first drag maxima of both
cases coincide.

reference case with lc/h= 9, the cylinder is located sufficiently far from the gate to
allow for the three-dimensional breakup of the Kelvin–Helmholtz billows and their
associated recirculation zones along the bottom wall before the current meets the
cylinder (cf. figures 3a, 3e and 3f ). On the other hand, for lc/h= 3, the cylinder is too
close to the gate to allow for this breakup, and hence the resulting Kelvin–Helmholtz
billows and recirculation zones are still very coherent by the time they encounter
the cylinder (cf. figures 6a and 6b). Consequently, as figure 7 shows, while the drag
undergoes only one large fluctuation in the time interval 3.3 < t/(h/V ) < 14 for the
reference case with lc/h= 9, it undergoes three large fluctuations in the same time
interval for the case with lc/h= 3. Note that the curve for the reference case has been
shifted along the abscissa in figure 7 in order to have the first drag maxima of both
cases coincide. The maximum drag at impact is affected only weakly by this change
of lc/h ( < 10 % change). We can conclude that as long as lc/h is sufficiently large for
the current to reach a constant front velocity and to allow for the three-dimensional
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Figure 8. Comparison of the spanwise-averaged (a, b) drag and (c, d ) lift between two-
dimensional (thin lines) and three-dimensional (thick lines) simulations for Re = 9000,
D/h = 0.1, lc/h = 3 and (a, c) G/h = 0.15 and (b, d ) G/h = 0.03. Two-dimensional simulations
of gravity current flows past circular cylinders provide quantitatively accurate information for
the impact stage. During the later flow stages, they capture the correct fluctuation frequency
while overpredicting the fluctuation amplitude.

breakup of the Kelvin–Helmholtz billows, this quantity is no longer a dominant
parameter.

For the sake of completeness we mention that corresponding two-dimensional
simulations (not shown here) show the effect of lc/h on the force fluctuations during
the transient stage to be much less pronounced, as long as the current front has
reached a constant velocity by the time it encounters the cylinder.

We now focus on comparing predictions from two-dimensional and three-
dimensional simulations for two values of the gap (G/h). For a detailed discussion
of the effect of the gap size in two-dimensional simulations, the reader is referred to
Gonzalez-Juez et al. (2009b). For the impact stage t/(h/V ) < 3.3, figure 8 shows the
two-dimensional and three-dimensional simulation results to be in good agreement.
For the quasi-steady stage t/(h/V ) > 14, on the other hand, the amplitude of the
force fluctuations is overpredicted by the two-dimensional simulations, while their
frequency is accurately captured. Note that the increase of the fluctuation amplitude
with G/h is reproduced correctly by the two-dimensional simulations. During this late
stage, both two-dimensional and three-dimensional simulations show the presence of
von Kármán vortex shedding for the larger gap (cf. figure 9 for the three-dimensional
results). Conversely, for the smaller gap only clockwise vortices exist (figure 3), since
the vorticity in the cylinder’s bottom shear layer is effectively cancelled by the vorticity
of opposing sign in the bottom-wall boundary layer (Taniguchi & Miyakoshi 1990;
Lei et al. 2000; Gonzalez-Juez et al. 2009b). Neither two-dimensional nor three-
dimensional simulations show the convection of separated flow structures along the
bottom wall upstream of the cylinder during the quasi-steady stage, for the present
parameters. Hence the observed overprediction of the force fluctuations during the
quasi-steady stage by two-dimensional simulations is not due to overly coherent
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Figure 9. Spanwise vorticity ω/(V/h) field at z/h = 0.5 and at t/(h/V ) = 16.5 for Re = 9000,
D/h = 0.1, lc/h = 3 and G/h = 0.15. The cylinder is located at x/h = 3–3.1. Notice the presence
of von Kármán vortex shedding for sufficiently large values of G/h.

recirculation regions along the bottom wall. Rather, they occur for the same reason
as in constant-density flows, i.e. by the shedding of vortices closer to the cylinder in
two-dimensional simulations (Mittal & Balachandar 1995).

During the transient stage (t/(h/V ) = 3.3–14), figure 8 shows that two-dimensional
simulations significantly overpredict the amplitude of the force fluctuations, especially
for the larger gap. This overprediction is caused by the more coherent Kelvin–
Helmholtz billows in the two-dimensional simulations. We note from figures 8(a) and
8(c) that during the time interval t = 5–10 there are about twice as many drag as lift
cycles, in agreement with the typical behaviour of uniform Kármán vortex flow past
an isolated cylinder. Figures 8(b) and 8(d ) appear to suggest that two-dimensional
simulations can capture the force fluctuations for the smaller G/h quite accurately,
with the exception of the interval t/(h/V ) = 4–6. However, this good agreement is
just coincidental: the value of lc/h selected for the three-dimensional simulation is
too small to allow for the breakup of the Kelvin–Helmholtz billows. When comparing
the two-dimensional results with the three-dimensional reference case in figure 7, we
notice a substantial discrepancy.

To summarize, two-dimensional simulations of gravity current flows past circular
cylinders can be employed to obtain quantitative information for the impact stage.
During the later stages, they correctly predict the dominant fluctuation frequency
while overpredicting the fluctuation amplitude. This supports the two-dimensional
results for gravity current flows with H/h = 5 and Re = 2000 and 6000 discussed in
Gonzalez-Juez et al. (2009b). These conclusions are similar to those reached earlier
for bottom-mounted square cylinders (Gonzalez-Juez et al. 2009a), even though they
address a fundamentally different flow configuration with strong force fluctuations
because of vortex shedding.

3.4. Spanwise variation of the drag and associated flow structures

3.4.1. Impact stage

Figure 10(a) shows a spanwise peak-to-peak variation of the drag of up to 30 %
during impact. The following discussion provides evidence that this spanwise variation
is governed by the gravity current’s frontal lobe and cleft structure. Right after the
gate at x = 0 is opened (figure 1), a filamentary flow structure forms at the front of the
current (Härtel, Carlsson & Thunblom 2000a; Härtel et al. 2000b) and later develops
into the lobe and cleft structure (Simpson 1972) (cf. also figure 2a). The temporal
evolution of this lobe and cleft structure before impact is visualized in figure 10(b)
by means of the concentration c∗ = 0.1 isolines in the y/h = 0.002 plane.

Figure 10 shows that the lobes hit the cylinder at approximately z/h =0.16, 0.42
and 0.77 and that the drag reaches instantaneous peaks at these locations during
the impact stage. The other three-dimensional simulations conducted within this
investigation display similar behaviour, as do earlier simulations for bottom-mounted
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Figure 10. (a) Spanwise variation of the drag for Re = 9000, D/h = 0.1, lc/h =9 and
G/h = 0.03 at different times during the impact stage: t/(h/V ) = 9.1 (thick solid line), 9.2
(dashed line) and 9.3 (thin solid line). (b) Temporal evolution of the lobe and cleft structure
before impact, visualized by the concentration c∗ = 0.1 isolines in the y/h =0.002 plane during
the interval 3.5 < t/(h/V ) < 9.2. The cylinder is located at x/h = 9–9.1. The spanwise drag
variation at impact is determined by the gravity current’s lobe and cleft structure.

square cylinders (Gonzalez-Juez et al. 2009a). This suggests that the spanwise drag
variation at impact is determined by the gravity current’s lobe and cleft structure,
even when a gap exists between the cylinder and the bottom wall. We remark that in
the three-dimensional simulations with lc/h= 3, even though the Kelvin–Helmholtz
billows do not break up before the current meets the cylinder, a developed lobe and
cleft structure is observed. An increase of the Reynolds number, from Re = 9000 in the
reference case to Re = 45 000, produces a somewhat smaller characteristic spanwise
length scale of the drag variation (cf. figure 11), which results from smaller lobe
sizes at higher values of Re (from data not shown here and from Simpson 1972).
A spanwise drag variation governed by the lobe and cleft structure is also observed
when the gap is increased, from G/h = 0.03 in the reference case to G/h = 0.15.

3.4.2. Quasi-steady stage

Figure 12 shows the spanwise variation of the drag at different times during
the quasi-steady stage, as well as the drag value averaged during the interval
14.2 < t/(h/V ) < 17.9, for the simulations with Re =9000, lc/h= 3 and G/h= 0.03
and 0.15. The drag variation exhibits a characteristic length scale of the order of
D, which is especially noticeable in the large-gap case. We remark that during the
quasi-steady stage the lobe and cleft structure is not longer present.

For the larger-gap case (G/h = 0.15), figure 13 shows the presence of primary
von Kármán vortices (cf. also figure 9) and of secondary streamwise vortices in the
near wake. These flow structures are similar to those seen in the classic problem
of constant-density flow past a circular cylinder at ReD values of a few hundreds
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Figure 11. Spanwise variation of the drag for Re = 45 000, D/h = 0.1, lc/h = 9 and
G/h =0.03 at t/(h/V ) = 8.6 (solid line) and 8.7 (dashed line) during impact.
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Figure 12. Spanwise variation of the drag for Re = 9000, D/h = 0.1, lc/h = 3 and (a,
c) G/h = 0.15 and (b, d ) G/h = 0.03 at different times during the quasi-steady stage:
t/(h/V ) = 14.2 (solid lines), 15.3 (dashed lines), 16.5 (dashed-dotted lines) and 30 (dotted
lines). The time-averaged drag is shown in (c) and (d). Notice the spanwise variation of the
drag with a characteristic length of about a cylinder diameter D for the larger gap.

(Williamson 1996). We remark that ReD = UD/ν = 459 for the reference case, as
discussed in § 3.5. The spacing of the streamwise vortices scales with D (cf. figure 13
for the gravity current flow and figure 14 in Williamson 1996 for the classic flow).
Hence we can conclude that these vortices cause the D-scale spanwise drag variation
in figure 12(a). Figures 13 and 14 show that a decrease of the gap considerably
distorts the flow structures in the near wake, which explains the suppression of the
D-scale spanwise drag variation in figure 12(c).

3.5. Comparison with the classic flow past a circular cylinder

For sufficiently large gaps, the above discussion indicates strong similarities between
the quasi-steady wake flow structures and the classic constant-density flow past a
circular cylinder. We will now quantify this level of agreement for Re = 9000, lc/h= 3
and G/h =0.15 by focusing on the mean drag, the peak-to-peak lift variation and
the frequency of the force fluctuations (cf. the data in table 3).
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Gravity Classic
Parameter current flow flow

FD,mean/(0.5ρ0DU 2) 1.25 (1%) 1.24†

FL,pp/(0.5ρ0DU 2) 1.11 (13 %) 1.28†

f/(U/D) 0.25 (19 %) 0.21‡

†Three-dimensional simulation by Mittal & Balachandar (1995).
‡Experiments by Prasad & Williamson (1997).

Table 3. Comparison of the mean drag FD,mean/(0.5ρ0DU 2), peak-to-peak lift
FL,pp/(0.5ρ0DU 2) and frequency of the force fluctuations f/(U/D) between the gravity current
flow past a circular cylinder far away from the bottom wall at ReD = 459 (three-dimensional
simulation with Re = 9000, lc/h = 3 and G/h = 0.15) and the classic constant-density flow past
a circular cylinder in infinite domains at ReD =525 or ReD = 460. The relative difference,
indicated in per cent, is sufficiently small for constant-density flows to provide a useful
approximation during the quasi-steady stage.

(a)

(b)

Figure 13. Instantaneous (a) spanwise and (b) streamwise vorticity isosurfaces (ωz/(V/h) = 4
and ωx/(V/h) = 4 in dark grey and ωz/(V/h) = −4 and ωx/(V/h) = −4 in light grey) during
the quasi-steady stage for Re = 9000, D/h = 0.1, lc/h =3 and G/h = 0.15. Notice the presence
of primary von Kármán vortices and of secondary streamwise vortices in the near wake.

For the gravity current flow, the effective free-stream velocity U is approximately
constant during the quasi-steady stage, at a value U =0.86V (cf. figure 15). This
agrees with the finding by Thomas, Dalziel & Marino (2003) that the fluid velocity
within the gravity current some distance upstream of the head is lower than at the
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(a)

(b)

Figure 14. Instantaneous (a) spanwise and (b) streamwise vorticity isosurfaces (ωz/(V/h) = 4
and ωx/(V/h) = 4 in dark grey and ωz/(V/h) = −4 and ωx/(V/h) = −4 in light grey) during
the quasi-steady stage for Re =9000, D/h = 0.1, lc/h =3 and G/h = 0.03. A comparison with
figure 13 indicates that reducing the gap size considerably distorts the flow structures in the
near wake.

0 0.2 0.4 0.6 0.8 1.0

0

0.2

–0.2

–0.4

0.4

0.6

0.8

1.0

y/h

u/
V

Figure 15. Time-averaged horizontal velocity profile upstream of the cylinder during the
quasi-steady stage (14.2 < t/(h/V ) < 17.9) for Re = 9000, D/h = 0.1, lc/h = 3 and G/h =0.15
at z/h = 0.5 and x/h =13.5 (solid line), 14 (dashed line) and 14.5 (dash-dotted line). The
cylinder is located at y/h =0.15–0.25.

head itself. The Reynolds number ReD = UD/ν based on U and the cylinder diameter
thus has a value of 459, which is sufficiently close to the values investigated by Mittal
& Balachandar (1995) and Prasad & Williamson (1997) to make a valid comparison.
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Figure 16. Comparison of lift fluctuations during the quasi-steady stage between ‘long’
(thin lines, L/h =60, l/h = 24) and ‘short’ (thick lines, L/h = 24, l/h = 12) two-dimensional
simulations for Re =9000, D/h = 0.1, lc/h =3 and (a) G/h = 0.15 and (b) G/h = 0.03. The
amplitude and frequency of the lift fluctuations differ by less than 5 % when calculated from
34 shedding cycles instead of 8 cycles.

In this range of Reynolds numbers the quantities of interest depend only weakly on
Re (Zdravkovich 1997; Norberg 2003).

The number of shedding cycles from which the quantities shown in table 3 are
calculated can be increased by extending the computational domain L/h and the lock
length l/h and by running the simulation for a longer time. Very long, two-dimensional
simulations show that these quantities differ by less than 5 % when calculated from
34 shedding cycles (L/h = 60, l/h= 24) instead of 8 cycles (L/h = 24, l/h= 12). For
example, we calculate from the lift fluctuations shown in figure 16(a) the difference of
the peak-to-peak amplitude and frequency of the lift fluctuations of 5 % (2 %) and
3 % (1 %) respectively for Re = 9000, lc/h= 3 and G/h=0.15 (G/h= 0.03). Thus,
we expect our calculation of the mean drag, peak-to-peak lift and frequency of the
force fluctuations from eight shedding cycles of a three-dimensional simulation to be
adequate for determining if there is a large difference in the values of the quantities
shown in table 3 between the two types of flows considered here. The data shown in
table 3 indicate that this difference is quite small. Hence the interaction between the
mixing layer and the Kármán vortices, the mean lift component because of buoyancy
and the slight wake deflection towards the bottom wall do not significantly influence
the force loading for the present case. We conclude that in this parameter regime the
force magnitude and frequency for quasi-steady gravity current flows over cylinders
can be estimated, within some margin of error, on the basis of the available data from
studies of constant-density flows past cylinders near walls (Bearman & Zdravkovich
1978; Zdravkovich 1985; Fredsøe & Hansen 1987; Chiew 1991; Lei et al. 1999, 2000).

4. Wall shear stress
In the following, we will analyse the dependence of the dimensionless friction

velocity uτ/V on the various flow parameters, because of its importance for the
transport of sediment as discussed in § 1. The friction velocity is defined as

uτ

V
=

√
|τw|
ρ0V 2

,
|τw|
ρ0V 2

=
1
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V
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)−1
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Figure 17. Streamwise variation of the friction velocity uτ /V from two-dimensional
simulations of gravity current flows without obstacles, for H/h = 2.5 and Re =2000 (solid line)
and Re = 9000 (dashed line). The front of the current is located at x/h = 11.9 (x/h =12.7) for
Re = 2000 (Re = 9000) and is indicated by a vertical solid (dashed) line. Note the larger friction
velocities at the head of the current (x/h ≈ 12), as compared with the tail (−3 <x/h < 4).
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Figure 18. Effect of Re on the front speed (V/ub , asterisks), boundary layer thickness (δ90/h,
crosses) and friction velocity at the head ((uτ /V )head , filled circles) and at the tail ((uτ /V )tail ,
open circles) from two-dimensional simulations of gravity currents without obstacles for
H/h = 2.5. Also shown in (b) are the results for (uτ /V )head (filled symbols) and (uτ /V )tail

(open symbols) from simulations of gravity currents with H/h = 1 and l/h ∼ 1 by Ooi et al.
(2009) (squares), Necker et al. (2002) (diamonds) and Cantero et al. (2008) (triangles).

4.1. Gravity current flows without obstacles

For reference purposes, we present data from two-dimensional simulations of gravity
current flows without any obstacles. The parameters of these simulations are the
same as in § 2.3 but with a grid of 1200 × 200 instead. Figure 17 shows the streamwise
variation of the friction velocity for two values of Re at a time when the front of
the current is near the end of the domain. Near the front, note the increase of the
friction velocity in the upstream direction towards a maximum. This maximum is
referred to as (uτ/V )head . The friction velocity averaged over −3 <x/h < 2 is denoted
as (uτ/V )tail . We furthermore define the boundary layer thickness δ90/h during the
quasi-steady stage as the length over which the horizontal velocity averaged over
−3 <x/h < 2 increases to 90 % of its maximum value.

Figure 18 shows that while V/ub depends only weakly on Re, the other quantities
decrease notably with Re. More importantly, figure 18(b) shows that the friction
velocity at the head of the current is larger than that at the tail. We will employ this
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Figure 19. Friction velocity contours (uτ /V ) for Re = 9000, D/h = 0.1, lc/h =9 and
G/h = 0.03 at different times: t/(h/V ) = (a) 7.3 (b) 9.4 (maximum friction velocity below
the cylinder), (c) 9.9 and (d ) 16.5. The cylinder is at x/h = 9–9.1. Darker shades indicate
higher friction velocities.

information later in the analysis of gravity current flows past cylinders. Also note
that the values for (uτ/V )head and (uτ/V )tail for H/h = 2.5 and l/h= 12 are close to
those for H/h = 1 and l/h ∼ 1 obtained in other studies (Necker et al. 2002; Cantero
et al. 2008; Ooi et al. 2009).

4.2. Reference case

Figures 19 and 20 show the temporal evolution of friction velocity for the reference
simulation (Re = 9000, G/h= 0.03 and lc/h= 9), in which the cylinder is positioned at
x/h= 9–9.1. The maximum friction velocity throughout the entire interaction occurs
at t/(h/V ) = 9.3, shortly after the time of maximum drag (t/(h/V ) = 9.2), and at
x/h= 9.04, just upstream of the cylinder’s centre (x/h = 9.05). Large friction velocities
are observed near the cylinder during the transient stage (cf. figure 21), especially
as the head of the current plunges downward just downstream of the cylinder (cf.
figures 3d and 20c). During the quasi-steady stage, the friction velocity right below
the cylinder is approximately constant with time (figure 21) and about 30 % lower
than at impact. The fluctuations of the friction velocity immediately downstream of
the cylinder (x/h= 9.1–9.5) in figure 20(d ) result from the shedding of vortices of
negative vorticity (figure 3f ), as will be discussed below. Similar observations hold
for the case of Re = 45 000.

Recall from figure 10(b) that the lobes first make contact with the cylinder at
approximately z/h =0.16, 0.42 and 0.77. Figure 22 shows that the friction velocity
reaches local maxima at these spanwise positions, which indicates that the lobe and
cleft structure governs the spanwise variation of the friction velocity at impact. Similar
behaviour was observed in the other three-dimensional simulations.
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Figure 20. Streamwise variation of the friction velocity (uτ /V ) at z/h = 0.5 for Re = 9000,
D/h = 0.1, lc/h =9 and G/h =0.03 at different times: t/(h/V ) = (a) 7.3, (b) 9.4 (maximum
friction velocity below the cylinder), (c) 9.9 and (d ) 16.5. The cylinder is located at x/h =9–9.1.
The front of the current using the c∗ = 0.5 contour at z/h = 0.5 is indicated by the thin
vertical lines. The maximum value of the friction velocity throughout the interaction occurs in
(b). Also note the large friction velocities downstream of the cylinder in (c), as the current
plunges downstream of the cylinder.
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Figure 21. Temporal evolution of the spanwise-averaged friction velocity uτ /V immediately
below the centre of the cylinder (x = lc + D/2), for Re = 9000, D/h = 0.1, lc/h = 9 and
G/h =0.03.

4.3. Range of validity of two-dimensional simulations

Figures 23 and 24 show that during impact (t/(h/V ) < 3.2) two-dimensional and three-
dimensional simulation data for the spanwise-averaged maximum friction velocity
agree to within 6 %. Of course, spanwise variations of the friction velocity are not
captured by two-dimensional simulations. Figure 23 furthermore indicates that during
the quasi-steady stage (14.2 < t/(h/V ) < 17.7) the friction velocity tends towards a
constant mean value, which is approximately identical in the two-dimensional and
three-dimensional simulations. Similarly, figure 24 shows that two-dimensional and
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Figure 22. Spanwise variation of the friction velocity uτ /V immediately below the cylinder
centre at x = lc + D/2, for Re = 9000, D/h = 0.1, lc/h = 9 and G/h =0.03 at t/(h/V ) = 9.2
(solid line) and 9.3 (dashed line).
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Figure 23. Comparison of the spanwise-averaged friction velocity uτ /V immediately below
the cylinder: two-dimensional (thin lines) and three-dimensional (thick lines) simulations for
Re = 9000, D/h = 0.1, lc/h =3 and (a) G/h = 0.15 and (b) G/h = 0.03. The results from both
‘long’ (dashed thin lines, L/h =60, l/h = 24) and ‘short’ (solid thin lines, L/h =24, l/h =12)
two-dimensional simulations are shown.

three-dimensional simulations give comparable results for the streamwise variation of
the friction velocity near the cylinder (x/h= 2.9–3.2).

For the transient stage (3.2 < t/(h/V ) < 14.2), figure 23 displays large fluctuations of
the friction velocity below the cylinder in both two-dimensional and three-dimensional
simulations. Note, however, that this apparently good agreement is due to the short
distance between the gate and the cylinder (lc/h= 3), which does not allow for
the complete breakup of the Kelvin–Helmholtz vortices in the three-dimensional
simulations, as explained earlier. A comparison of figures 21 and 23(b) indicates
significant differences when the two-dimensional simulation is compared with the
three-dimensional simulation for lc/h= 9, in which the Kelvin–Helmholtz vortices
break up before encountering the cylinder. To conclude, two-dimensional simulations
provide accurate information for the friction velocity immediately below the cylinder
during the impact stage and for the time-averaged values during the quasi-steady
stage.

4.4. Effect of the gap

Figure 25 displays the effect of the gap size G/h on the streamwise variation of the
friction velocity near the cylinder (a) at impact and (b) during the quasi-steady stage.
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Figure 24. Comparison of the streamwise variation of the friction velocity uτ /V near the
cylinder: two-dimensional (thin lines) and three-dimensional (thick lines) simulations for
Re = 9000, D/h = 0.1, lc/h =3 and (a, c) G/h = 0.15 and (b, d ) G/h = 0.03. Times are
(a, b) t/(h/V ) = 3.3 and (c, d ) t/(h/V ) = 15.3. In (a) and (b) the current front is located
at x/h ≈ 3.2, while in (c) and (d) it has reached x/h ≈ 14.4. Both the spanwise-averaged (solid
lines) and the z/h = 0.5 (dashed lines) values of uτ /V are shown from the three-dimensional
simulations. The cylinder is located at x/h = 3–3.1.
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Figure 25. Effect of G/h on the streamwise variation of the friction velocity uτ /V near the
cylinder at impact (a, t/(h/V ) = 3.3) and during the quasi-steady stage (b, t/(h/V ) = 15.3).
Two-dimensional simulations for Re = 9000, D/h = 0.1, lc/h = 3 and different values of G/h:
0.015 (solid line), 0.03 (dashed line), 0.05 (dash-dotted line) and 0.15 (dotted line). The cylinder
is located at x/h = 3–3.1. The maximum friction velocity occurs below the cylinder and
decreases for larger gaps.

The maximum friction velocity occurs below the cylinder and decreases for larger
gaps.

When vortex shedding is present during the quasi-steady stage, it results in friction
velocity fluctuations downstream of the cylinder (cf. figure 25b). While the peak of
these fluctuations is largest for intermediate gap sizes, we have to keep in mind
that two-dimensional simulations generally overpredict the fluctuation amplitudes (cf.
figure 24d ).
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Figure 26. Effect of G/h on the horizontal velocity profile within the gap (a) at impact
(t/(h/V ) = 3.3) and (b) during the quasi-steady stage (t/(h/V ) = 15.3). Two-dimensional
simulations for Re = 9000, D/h = 0.1, lc/h = 3 and different values of G/h: 0.015 (thick
solid line), 0.03 (dashed line), 0.05 (dashed-dotted line) and 0.075 (thin solid line).
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Figure 27. Effect of G/h on the spanwise variation of the friction velocity uτ /V below the
cylinder at impact (thick lines, t/(h/V ) = 3.3) and during the quasi-steady stage (thin lines,
t/(h/V ) = 15.3). The data are from three-dimensional simulations for Re =9000, D/h = 0.1,
lc/h =3 and different values of G/h: 0.03 (solid lines) and 0.15 (dashed lines). While the mean
friction velocity is lower for larger gaps, its spanwise variation is more pronounced.

Figure 26 shows the influence of the gap size G/h on the horizontal velocity profile
inside the gap, at x = lc + D/2, (a) during impact and (b) during the quasi-steady
stage. We note that the maximum horizontal velocity in the gap remains approximately
constant in the range G/h=0.03–0.075 (G/D = 0.3–0.75). This finding is consistent
with the open-channel flow experiments of Fredsøe & Hansen (1987) and Chiew
(1991), who observed a small effect of G/D on the average and maximum velocities
in the gap for G/D � 0.12.

Since the maximum horizontal velocity in the gap is approximately constant over the
range G/h= 0.03–0.075, it cannot explain the increasing friction velocity for smaller
gaps. However, we note in figure 26(a) change in the shape of the velocity profile
when the gap is increased from G/h = 0.015, which suggests a potential transition
between different flow regimes. This issue will be further analysed for a larger set of
parameters in § 5.

Figure 27 shows the spanwise peak-to-peak variation of the friction velocity during
impact. Values up to 0.04V (15 %) and 0.09V (50 %) are reached for G/h= 0.03 and
G/h = 0.15, respectively. Interestingly, while the friction velocity is lower for larger
gaps, its spanwise variation is more pronounced. As discussed earlier for the reference
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Figure 28. Effect of Re on the streamwise variation of the friction velocity uτ /V near the
cylinder (a) at impact (t/(h/V ) = 3.3) and (b) during the quasi-steady stage (t/(h/V ) = 15.3).
Data are from two-dimensional simulations for D/h = 0.1, G/h = 0.03, lc/h = 3 and different
values of Re: 4500 (solid line), 9000 (dashed line) and 18 000 (dash-dotted line). The dotted
line in (a) shows the friction velocity at z/h = 0.5 from the three-dimensional simulation with
Re = 45 000. The cylinder is located at x/h = 3–3.1.

case, the spanwise variation of the friction velocity at impact is governed by the
lobe and cleft structure. During the quasi-steady stage, the spanwise variations are
minimal.

4.5. Effect of the Reynolds number

For G/h = 0.03, figure 28 shows that the maximum friction velocity below the cylinder
decreases with increasing Re. This is expected, since from definition (4.1) uτ/V → 0
as Re → ∞. In addition, we found (not shown) that as we increase Re from 2000 to
18 000 for G/h = 0.03, the horizontal velocities in the gap increase, while the pressure
gradient below the cylinder remains approximately constant. The implications of this
for uτ/V will be further discussed in § 5 for a larger set of parameters. The Reynolds
number Re has a similar influence on the spanwise variations of drag and friction
velocity at impact: the characteristic length scale of these variations decreases as Re

increases, because of smaller lobes.

4.6. Dominant parameters

We will now attempt to quantify the dependence of the friction velocity below the
cylinder on the dominant parameters of the problem. Towards this end, we take as
the representative friction velocity during the impact stage the maximum value in
the intervals 2.95 <x/h < 3.15 and 2.8 < t/(h/V ) < 3.8. As representative quasi-steady
friction velocity, we take the time-averaged value at x/h = 3.05.

This time-averaged value is calculated over a time interval of approximately four
dimensional time units (h/V ), during which 8–10 shedding cycles occur whenever
vortex shedding is present. Such time interval is selected so that the convection
of vortical structures along the bottom wall towards the cylinder and that of
Kelvin–Helmholtz vortices at the fluids interface has ceased. As discussed previously
in § 3.5, the quasi-steady friction velocity calculated from 30–35 cycles of ‘long’
two-dimensional simulations is within that calculated from 8–10 cycles of ‘short’
simulations. For example, we calculate from figure 23(a) difference between the quasi-
steady friction velocity of ‘long’ (L/h= 60, l/h= 24) and ‘short’ (L/h = 24, l/h= 12)
two-dimensional simulations of 7 % (3 %) for Re =9000, lc/h= 3 and G/h= 0.15
(G/h = 0.03).

The friction velocity uτ below the cylinder depends on

uτ = f (G, D, δ90, V , ν) . (4.2)
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Figure 29. Effect of (a) G/δ90 and (b) ReG on the maximum (closed symbols) and quasi-steady
(open symbols) friction velocity uτ /V for H/h = 2.5, D/h = 0.1, lc/h =3 and different values
of G/h and Re. The different values of Re are denoted as follows: Re = 2000 (squares),
3000 (circles), 4500 (triangles), 9000 (inverted triangles), 18 000 (diamonds) and 45 000 (right
triangle). The results from simulations for larger cylinders with D/h = 0.15, H/h = 5 and
Re = 6000 are also shown (stars). Data from two-dimensional simulations of constant-density
boundary layer flows past a circular cylinder near a bottom wall at ReD =200 (crosses) and
ReD = 525 (plus signs) are indicated for comparison.

The lock height h is not included among the list of parameters, since in practice
gravity current heights of h/2 (Simpson 1997; Shin et al. 2004) are much larger than
D and G, as discussed in § 2.3. We note that if V were not included, then h would
enter the dependency through

√
g′h. By taking G and V as the repeating variables in

the above dependency, Buckingham’s Π-theorem gives

uτ

V
= F

(
G

D
,

G

δ90

, ReG

)
, (4.3)

where ReG is a gap Reynolds number defined as ReG = V G/ν. However, the
parameters we control directly in the simulations are G/h, Re and D/h, so that
we can modify the values of the parameters in the above relation only indirectly;
G/D is varied by changing G/h in the range G/h = 0.015–0.15 and by employing
both D/h= 0.1 and D/h = 0.15; G/δ90 is varied through G/h and Re; Re is related
to δ90/h as shown in figure 18(a). Here Re is changed in the range Re = 2000–45 000.
Finally, the gap Reynolds number ReG is varied by changing G/h and Re, since
ReG = Re(G/h)(V/ub).

While we observed an overall decrease of the maximum and quasi-steady friction
velocities for increasing G/D, there was substantial scatter in the data when we
graphed them against G/D. On the other hand, we obtained better collapse when
plotting the data against G/δ90 and ReG. The dependence of the maximum and
quasi-steady friction velocities on these parameters is shown in figure 29. Note the
particularly good collapse of the data as function of ReG.

5. Implications for scour
To isolate the effect of the cylinder presence on the friction velocity it is useful to

analyse the ratio of the friction velocities with and without the cylinder. This ratio
is commonly referred to as the amplification factor AF in scour studies (Sumer &
Fredsøe 2002). We define the impact amplification factor as the ratio of the maximum
friction velocity immediately below the cylinder to the friction velocity at the head of
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Figure 30. Effect of ReG on the impact (filled squares) and quasi-steady (open squares) values
of the amplification factor (AF ) for H/h = 2.5, D/h = 0.1, lc/h = 3 and different values of
G/h and Re. Also shown are the results from two-dimensional simulations of constant-density
boundary layer flows past a circular cylinder near a bottom wall at ReD = 200 (crosses) and
ReD = 525 (plus signs). The impact amplification factor is comparable to the quasi-steady
value.
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Figure 31. Effect of ReG on the maximum velocity in the gap during the impact (filled
squares, t/(h/V ) = 3.3) and quasi-steady (open squares) stages. Simulation parameters are
H/h = 2.5, D/h = 0.1, lc/h =3 and different values of G/h and Re. Data from two-dimensional
simulations of constant-density boundary layer flows past a circular cylinder near a bottom
wall at ReD = 200 (crosses) and ReD = 525 (plus signs) are indicated for comparison.

a current without cylinder (cf. § 4.1). A corresponding definition is employed for the
quasi-steady amplification factor.

Figure 30 shows that AF increases with ReG for ReG � O(100), while it decreases
for higher ReG. For ReG � O(100), more of the faster-moving fluid away from the
wall enters inside the gap as ReG increases (cf. figure 31), so that AF increases. In
figure 31, ugap/V is the maximum horizontal velocity at x/h = 3.05, and its value
at t/(h/V ) = 3.3 is employed to characterize the impact stage, while a temporally
averaged value is used for the quasi-steady stage. On the other hand, notice in figure 31
that the velocities inside the gap stay approximately constant for ReG � O(100). When
ReG � O(100), AF decreases as ReG increases. This is expected, since at very large
values of ReG the amplification factor would reach the asymptote AF = 1, at which
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Figure 32. Gravity current of height h/2 about to encounter a bottom-mounted square
cylinder of side D.

the cylinder is ‘far enough’ from the bottom wall so that its presence is ‘not felt’ at
the bottom wall.

Figure 30 also shows that the amplification factor during impact is about the same
as during the quasi-steady stage. In other words, the presence of the cylinder amplifies
proportionally the friction velocity of a current without obstacle during all stages of
the interaction.

We can now compare the above results with those from two-dimensional simulations
of constant-density boundary layer flows past circular cylinders near walls at
ReD =UD/ν of 200 and 525, where U is the horizontal velocity outside the boundary
layer. The gap G/D is varied in the range G/D = 0.15–1.5. The complete parameters
of these two-dimensional simulations can be found in Gonzalez-Juez (2009). We find
that for gravity currents and constant-density flows, ReG has a similar effect on the
friction velocity below the cylinder (figure 29b), on the amplification factor (figure 30)
and on the maximum horizontal velocity in the gap (figure 31). (Note that V denotes
the front velocity for the gravity current and the free-stream velocity for the constant-
density flow.) Hence, if we know the friction velocities at the head and tail of a
gravity current without obstacle (§ 4.1), we can employ the amplification factor for
constant-density flows past cylinders near walls to estimate the friction velocity for
gravity currents in the presence of a cylinder.

We now discuss the onset of scour near a pipe embedded in an erodible bed
of uniform and cohesionless sediment. Scour starts when the difference in pressure
upstream and downstream of the pipe 
p, which induces a seepage flow beneath the
pipe, is sufficiently large to break the soil under the pipe, a process that is referred to
as piping. A necessary condition for this break to occur is (Chiew 1990; Sumer et al.
2001)


p/(ρ0g)


x
� if . (5.1)

Here 
x is the streamwise distance across which the pressure difference is established,
and if denotes a property of the bed called the floatation gradient. The pressure
gradient 
p/(ρ0g
x) can be either dynamic or static (Chiew 1990; Sumer et al.
2001). A further necessary condition is that 
p/(ρ0g
x) must be maintained for a
sufficiently long time, or, if cyclic and with a short time period, 
p/(ρ0g
x) should
occur repeatedly (Sumer et al. 2001). Past studies have addressed the onset of scour
in both steady and wavy flows (e.g. Mao 1986; Chiew 1990; Sumer et al. 2001).

The pressure difference 
p/(ρ0g
x) for bottom-mounted square cylinders in gravity
current flows can now be estimated, along with the time interval over which this
pressure difference is maintained. Towards this end, we will make partial use of the
results obtained by Gonzalez-Juez et al. (2009a). Consider a gravity current of height
h/2 about to encounter a bottom-mounted square cylinder of side D (cf. figure 32),
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under the realistic conditions of h � H and D � h. The hydrostatic pressure at y = 0
(the sediment bed surface) immediately upstream of the cylinder can be estimated as
ρ0g(H −h/2)+ρ1gh/2, while its counterpart immediately downstream of the cylinder
is ρ0gH . The dynamic pressure is estimated as 0.5ρ0V

2 upstream of the cylinder and
as zero downstream, since the wake is very weak at impact (Gonzalez-Juez et al.
2009a). For an inviscid gravity current with h � H , Shin et al. (2004) predicted a
front speed of V =

√
g′h/2. Thus, by taking 
x = D, we obtain


p/(ρ0g)


x
= 0.75

(
D

h

)−1 (

ρ

ρ0

)
. (5.2)

Because the flow is essentially inviscid (Re → ∞), (5.2) is applicable to full-scale flows.
By combining (5.1) and (5.2), we obtain the following preliminary criterion for the
onset of scour when a gravity current encounters a submerged cylinder:

0.75

(
D

h

)−1 (

ρ

ρ0

)
� if . (5.3)

Typical submarine applications may involve parameter values D/h ≈ 0.005–0.5 (cf.
§ 2.3) and 
ρ/ρ0 � 0.05. We can assume if ≈ 1, on the basis of the values of 0.9 and
0.77 determined experimentally by Chiew (1990) and Sumer et al. (2001), respectively.
We conclude that it is possible for inequality (5.3) to be satisfied by typical Boussinesq
gravity currents, so that piping may occur.

It remains to be shown that the pressure difference given by (5.2) can be sustained
for sufficiently long times. Towards this end, we assume that the time interval during
which this pressure difference is sustained, 
t , scales with the time D/V it takes for
the gravity current to advance one cylinder diameter. With V =

√
g′h/2 we obtain

D/V =
√

2D2/(g′h). Typical gravity current heights h/2 are 10–100 m in the ocean
(Kneller et al. 1999) and 0.05–0.5 m in the laboratory. We take a characteristic cylinder
diameter of 1 m for ocean conditions and 0.01 m for laboratory conditions and a
density difference of 
ρ/ρ0 ≈ 0.01. Thus, we obtain 
t ∼ 1 s for ocean conditions
and 
t ∼ 0.1 s for laboratory conditions. Since Sumer et al. (2001) have reported
that a time interval of 5 s suffices for piping to occur under the conditions of their
experiments, while 0.5 s does not, our estimates for the time interval over which

p/(ρ0g)/
x is maintained suggest that piping may occur in the ocean, while it will
probably not occur in the laboratory.

We conclude that a sufficiently large pressure difference may be maintained over a
long enough time interval for piping to occur in the ocean. We also note that the lobe
and cleft structure may well cause substantial spanwise variations of this pressure
difference (cf. § 3.4), so that scouring may be initiated locally (Sumer & Fredsøe 2002).

6. Summary and conclusions
The present investigation has focused on the flow of compositional gravity currents

past circular cylinders mounted above a non-erodible wall. It employs Navier–Stokes
simulations to quantify the force load on the cylinder, along with the friction velocity
at the bottom wall near the cylinder. The simulation results are then analysed with
a view towards the occurrence of scour near pipelines mounted on erodible beds. In
order to address practically relevant situations, we consider a sufficiently large ratio
of the channel height and the lock height (H/h = 2.5) and a small ratio of the cylinder
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diameter and the lock height (D/h = 0.1). The Reynolds numbers in the range of
2000–45 000 are typical for laboratory-scale flows.

Comparisons of two-dimensional and three-dimensional simulations show that
two-dimensional simulations accurately capture the overall features of the impact
stage. Clearly, three-dimensional simulations are required to reproduce the spanwise
variations caused by the lobe and cleft structure. Throughout the transient stage,
two-dimensional simulations notably overpredict the fluctuations of the force load
and friction velocity, because of unphysically coherent Kelvin–Helmholtz billows.
During the quasi-steady stage, two-dimensional simulations give accurate results for
the spanwise and temporally averaged friction velocity below the cylinder, as long as
there are no separated flow regions propagating along the bottom wall. These findings
support previous results from two-dimensional simulations by Gonzalez-Juez et al.
(2009b).

Comparisons between gravity current and constant-density flows past circular
cylinders show that the impact and transient stages are unique to gravity current
flows. On the other hand, there are strong similarities between the two during the
quasi-steady stage: specifically, the wake structures are similar, and the values of
the drag, peak-to-peak lift, vortex shedding frequency and friction velocity below the
cylinder are comparable. Consequently, the values of these quantities during the quasi-
steady stage of a gravity current flow can be estimated to within 10–20 % (for the
parameters considered here) using existing data for the well-studied constant-density
flow past a circular cylinder near a wall.

The mechanisms governing the dynamics of the flow in the gap are discussed, and it
is shown that the friction velocity below the cylinder depends chiefly on the Reynolds
number ReG formed with the front velocity and the gap width. The maximum friction
velocity at impact is about 1.6 times larger than during the quasi-steady stage or
in constant-density flows. Hence aggressive tunnelling erosion can occur at impact,
which represents a key difference between the scour dynamics of gravity current and
constant-density flows. Furthermore, the larger friction velocity near the lobes (by
about 15 %) may trigger localized scour. During the quasi-steady stage, as a result
of vortex shedding for sufficiently large gaps, lee-wake erosion may occur. We note
that the above-given comments are based on the friction velocity data obtained from
simulations for non-erodible beds. Clearly, future research should extend the scope
of the simulations to erodible boundaries, non-Boussinesq currents (Birman, Martin
& Meiburg 2005; Lowe, Rottman & Linden 2005), sloping terrains (Birman et al.
2007a), stratified ambient and the effects of internal waves (Maxworthy et al. 2002;
Birman, Meiburg & Ungarish 2007b; Munroe et al. 2009), and it should involve
comparisons with corresponding laboratory experiments.
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